人乳奶水videos喷奶水,亚洲一区二区三区在线观看成人av,成人影,久久久蜜臀国产一区二区,免费观看一区,麻豆xxxhd

問(wèn)一道高數(shù)題,望大神解答。 題干:設(shè)函數(shù)f(x) 滿(mǎn)足下列條件?

首頁(yè) > 公積金2021-09-14 18:18:37

一道高數(shù)題設(shè)函數(shù)f(x)在[o,1]上具有二階導(dǎo)數(shù),具滿(mǎn)足條件|f(x)|<=a,|f"(x)|<=b.

其中a,b都是非負(fù)常數(shù),c是(0,1)內(nèi)任意一點(diǎn),證明|fx27(c)|<=2a (b/2)
f(0)=f(c)-f'(c)*c+f''(m)*c^2/2
f(1)=f(c)+f'(c)*(1-c)+f''(n)*(1-c)^2/2
兩式相減,得
f'(c)=f(1)-f(0)-f''(m)*c^2/2+f''(n)*(1-c)^2/2
所以
|f'(c)|<|f(1)|+|f(0)|+|f''(m)|*c^2/2+|f''(n)|*(1-c)^2/2
<a+a+b/2*(c^2+(1-c)^2)
<2a+(b/2)

一道高數(shù)題(很急)

設(shè)f(x)有二階連續(xù)導(dǎo)數(shù),且fx27(0)=0,lim(x→0)fx27x27(x)/|x|=1則f(0)是f(x)的 a極小值 b極大值 c拐點(diǎn) d不是極值點(diǎn)也不是拐點(diǎn) 答案是a,不過(guò)我不知道是為什么。后天要考試了,有這類(lèi)的題。求各位數(shù)學(xué)大神幫忙解答下O(∩_∩)O
因?yàn)閘im(x→0)f''(x)/|x|=1>0, 所以由保號(hào)性存在0的一個(gè)δ 鄰域,在這個(gè)鄰域內(nèi)有f''(x)/|x|>0
于是也有f''(x)>0, 所以f'(x)單調(diào)增,于是當(dāng)0<x<δ時(shí),f'(x)>f'(0)=0 ,所以函數(shù)f(x)單調(diào)遞增;
當(dāng)-δ<x<0時(shí),f'(x)<f'(0)=0 ,所以函數(shù)f(x)單調(diào)遞減, 所以函數(shù)在x=0點(diǎn)有極小值.

一道高數(shù)題 已知連續(xù)函數(shù)f(x)滿(mǎn)足方程f(x)=

由原方程得f(0)=0
且f'(x)=2xf(2x/2)·2 +2x
即f'(x)=4xf(x)+2x
d[f(x)]/[2f(x)+1] = 2xdx
d[2f(x)+1]/[2f(x)+1] = 4xdx
ln|2f(x)+1| = 2x²+C
2f(x)+1=C e^(2x²)
2f(0)+1=C,又f(0)=0,故C=1
故2f(x)+1=e^(2x²)
f(x)=[e^(2x²) -1]/2

相關(guān)推薦:

不要求快遞員賠償(順豐賠付是快遞小哥承擔(dān)嗎)

蔬菜大棚賠償信息(建蔬菜大棚國(guó)家國(guó)家如何補(bǔ)貼)

刑事證據(jù)提交原件(打官司證據(jù)原件要留給法院?jiǎn)?

天氣情況延誤賠償(飛機(jī)由于天氣原因延誤可以賠償嗎)

刑事沒(méi)證據(jù)能立案(僅有口供無(wú)證據(jù)可立案嗎)

熱門(mén)標(biāo)簽